Kushal Parekh

Sellersville, PA github.com/KushalP17 +1 (267) 772 2647 kushalparekh.com parekhkushal17@gmail.com linkedin.com/in/kushalp17

gilliuo.com/Rushan 17	Kushaipaickii.com	iikediii.com/iii/kushaip1/
Education:		
University of Pittsburgh:		Pittsburgh, PA
M.S. Electrical and Computer Engineering		Aug 2025 – Apr 2027
Researcher in Space High Performance	e and Resilient Computing (SHREC) Lab	
B.S. Electrical Engineering GPA: 4.0	, ,	Aug 2021 – Apr 2025
Frederick Honors College Joint Degree	e Computer Science Minor	5
Work Experience		
Systems Engineering Intern NASA IV&V (T	MC Technologies)	May 2025 – Present
	Control System in Satellite Simulator (NOS3), Im	•
• • • • •	erright Software, C++, Git, and GDB etry Channels across 12 Satellite Components in NO	083
Increasing Simulator Features 2x using F	•	<i>9</i> 33,
-	inication on an Emulated Zynq Cortex-A9 Board	
	rees, and custom Linux Kernel Modifications	
Electrical Engineering Intern GE Vernova	,	May 2024 – Aug 2024
 Validated 5 Gate Drivers through 3 Preci 	se Timing- and Performance-Matching Tests	
Programmed & Benchmarked a High-Sp	eed, Customizable Function Generator on an STM3	2 MCU
Teaching Assistant for The Art of Making U	niversity of Pittsburgh	Aug 2023 – Apr 2024
• Mentored 60 students directly to build Pr	roject Management, Prototyping, and Programming	g Skills
• Led 7 Workshops/Demos for Soldering,	Robotics, UI/UX, and Modular Electronics and Con	ntrollers
Electrical Engineering Intern GE Power Conversion		May 2023 – Aug 2023
 Created and Verified Power Electronics 1 	Performance and Analysis Script to Reduce Runtim	ne 100x
and Increase Data Output 10000x compa	red to Simulink, using MATLAB	
Projects:		
C.A.V.E.M.A.N. Cave-Mapping Autonomou	s Rover caverobotics.com	Jan 2025 – Apr 2025
	anufacture, Test Cave-Mapping Rover to autonomo	ously
	sing Depth Camera, 4 sensors, and 8 actuators	
 Generated 10 High Accuracy 3D Maps w RTAB-Map, Blender and RGB-D Camero 	vith Rover-Captured Images utilizing OpenCV, Mesa	shroom,
	Reality Map Viewers for Walkthroughs tested by 30	0+ Users
	trap 5, Meta Quest 2, and SimLab Composer	
1	Camera Communication Interfaces for Abstracted <i>l Buffers, ROS2, XML, and SDL3 in C++</i>	
LiteMonitr Hardware Live-Drawing Display		Dec 2024
 Designed 64x32 LED Live-Drawing Disp MCU, I2C, C++, and JavaScript 	play controlled by a Web-Bluetooth App, using an I	ESP32
Reduced live-drawing lag 8x and Elimina	ated Data Loss using Data Encoding and Packet Qu	ieues
SeizureSensor Wearable Nocturnal Seizure	Detection Platform	Sept 2024
• Won \$400 through Best Healthcare and 2	2 nd Best Overall Project at SteelHacks XI Hackathor	n
	hresholds to Trigger Alarm from Simulated Hospit	al
	ors and Computer Vision on a Raspberry Pi	
Autonomous Racing Robot Final Project for		Apr 2024
 Developed Bluetooth-controlled autonomedatapoints over Wi-Fi and MQTT, display 	nous racing robot, placing 3 rd , outputting 1000s of s yed through <i>Azure and NodeRed</i>	ensor
	eshility allayying high autonomous stability utilizin.	~ W.L

Implemented Adaptive Course Maneuverability allowing high autonomous stability utilizing Web

Bluetooth, Ultrasonic Distance Sensors and PID Control